search physics search Rutgers Search Rutgers Rutgers School of Arts and Sciences: Physics and Astronomy

Experimental High Energy Physics

High Energy Physics seeks to answer questions about the smallest units of matter. Our current understanding is that everything in the universe is built up from fundamental particles called quarks and leptons, which interact via the exchange of field particles such as the photon (responsible for the electromagnetic force), the Weak Bosons, W and Z (the weak nuclear force), and the gluon (the strong nuclear force).

The singular achievement of High Energy Physics, The Standard Model explains all our observations so far in a simple and straighforward way, much as Mendeleev's Periodic Table did in the 19th century.

There are many questions that the Standard Model leaves unanswered, or partially answered. Quantites like mass and charge are assigned empirically. We have no idea why there are so many quarks and leptons (while the entire stable universe is built from the two lightest quarks, and lightest charged lepton -- the electron). We do not quite understand why the universe came to be dominated by matter (the Standard Model treats matter and antimatter nearly equally).

Answering these questions requires probing matter at very small distances. This requires very high energies. Our work inevitably centers around large particle accelerator centers such as Fermilab in Batavia IL and CERN in Switzerland.

CMSICON" CMS is a collider detector at the LHC collider at CERN. It weighs about 12000 metric tons, and is studying proton-proton interactions at energies seven times higher than the Tevatron. The Rutgers group has helped build crucial hardware for the CMS detector.

CMS Physics

  • Higgs searches
  • Searches for exotic particles
Hardware
  • CMS Forward Pixels / Token Bit Manager
  • BCM beams safety and PLT luminosity detectors
  • HCAL
Future Hardware
  • PLT complete rebuild (for 2021)
  • Outer Tracker module construction (for Phase II 2026)
  • Track Trigger FPGA project (for Phase II 2026)


More about CMS at Rutgers...
OUTREACH
  • Quarknet

More about High Energy OUTREACH at Rutgers...
    Prior Research ▼ Prior Research ▲
CDFICON CDF is a collider detector. It weighs about 5000 metric tons, located at the Fermilab Tevatron collider. Its cylindrical shape surrounds a spot where protons and antiprotons are brought into collision at nearly the speed of light. The Rutgers group is involved in many aspects of CDF including:

  • Searches for Higgs
  • Searches for Supersymmetric particles
  • Investigations of top quark production

More about CDF at Rutgers...
D0ICON D0 One of two large collider experiments based at the Tevatron at FermiLab, D0 began operations in 1992, and along with CDF jointly discovered the top quark.
Rutgers involvement in D0 focuses on:
  • Standard Model measurements
  • Searches for exotic particles

More about D0...

People involved with Experimental High Energy Physics

Follow this link to see a complete list of people involved

At Rutgers.. At CERN..

Please send any comments on this page to webmaster@physics.rutgers.edu.
Updated Jan 11, 2019